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Blind source separation (BSS) is a general signal processing method, which consists of
recovering, from a "nite set of observations recorded by sensors, the contributions of
di!erent physical sources independently from the propagation medium and without any
a priori knowledge on the sources. Such methods are attractive for the monitoring or the
diagnosis of mechanical systems. It is shown that BSS allows the vibratory information
generated from a single rotating machine working in a noisy environment to be recovered by
freeing the sensor signal from the contribution of other working machines. In that way, BSS
can be used as a pre-processing step to rotating machine fault detection and diagnosis. In
this paper, two possible approaches to solve the BSS problem of rotating machine signals
are compared; that is, the temporal or frequential approach. The "rst method developed
initially for temporally white signals is used in an experimental context and it is shown that
the results are comparable to the frequential domain approach specially developed for
rotating machine signals. These two approaches are tested on real signals from a mechanical
testing bench, and the implementations of the di!erent methods as well as their
performances are discussed. An example to bearing fault detection is given in the "nal part,
to illustrate the potential of this approach as a pre-processing step to improve the diagnosis.
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1. INTRODUCTION

Blind source separation (BSS) is a general signal processing method, which consists of
recovering, from a "nite set of observations recorded by sensors, the contributions of
di!erent physical sources independently from the propagation medium and without any
a priori knowledge on the sources. These methods have been successfully used in many "elds
of applied sciences and engineering including medicine, telecommunications, audio
processing, noise reduction or data processing [1].

Until now, BSS methods have seldom been used for the monitoring and diagnosis of
mechanical system, such as the signals from rotating machines. The existing contributions
to this "eld include references [2}5] for a blind signal separation purpose, and also reference
[6] for data analysis. However, BSS is a promising tool for non-destructive monitoring
because the signals recorded by sensors in an industrial application are always disrupted by
the environment. (For example, ambient noise, other mechanical systems.) Using BSS as
0022-460X/01/500865#21 $35.00/0 ( 2001 Academic Press
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a pre-processing step would enable the speci"c signature of each rotating system to be used
for diagnosis, thus isolating them from interference from the environment.

The purpose of this paper is the application of BSS to rotating machine signals separation
and the comparison between temporal [4] and frequential [3] approaches for convolutive
mixtures. First, this comparison is made on two synthetic signals following a model of
gearbox vibrations [7] arti"cially mixed using a known transfer system. This preliminary
stage shows the potential of BSS for rotating machine signals when the assumption of linear
mixing is veri"ed. After that, BSS was applied to real signals from a test bench with two
motors "xed to the same structure. The objective is to extract the signature of each machine
from each sensor, which would allow an improvement in the fault detection method and
system diagnosis. Finally, an example of bearing fault detection was used to illustrate the
performance of BSS approaches and the capability, the advantages and the drawbacks of
temporal and frequential BSS algorithms for this framework are also discussed.

2. PRINCIPLE OF BSS

2.1. GENERAL CONCEPT

Blind source separation is a class of signal processing methods by which unobserved
signals, also called sources, are recovered from the observation of several mixtures of them.
Typically, the observations are obtained as the output of a set of sensors (antenna), where
each sensor receives a di!erent combination of source signals. The adjective &&blind''
indicates that the source signals are not observed and also that no information is available
about the mixture. This type of approach is potentially most useful when it is impossible to
model the transfer from the sources to the sensors. The lack of knowledge about the mixture
and the sources is compensated by assuming the mutual independence of the sources.

This assumption allows exploitation of the spatial diversity provided by many sensors
and is the fundamental basis of BSS. The general model of BSS is shown in Figure 1, which
assumes the existence of m statistically independent signals X (n)"[x

1
(n),2, x

m
(n)] and

the observation of at least m mixtures > (n)"[y
1
(n),2 , y

m
(n)] such as

> (n)"f (X (n), X (n!1) ,2, X(0))#B (n), (1)

where B (n)"[b
1
(n),2, b

m
(n)] denotes an additive noise which can be Gaussian or not.

The solution consists of "nding an estimate S (n) of the sources X (n) by adapting an
unknown separating function which leads to independence of S (n).

In the most general case these functions are non-linear with respect to the sources as well
as to several time lags. Nevertheless, in many "elds such as telecommunications or
biomedicine the mixture is commonly assumed to be a linear, time-independent
combination of the sources. This case of a linear memoryless mixing system is also called
Figure 1. BSS general scheme.
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instantaneous mixture. Mechanical systems are one example in which an instantaneous
assumption does not always hold true due to the transfer delays of the vibrations through
the structures. Usually, the model used for this application is a linear time-dependent
mixture, called a convolutive mixture. However, an instantaneous model can hold when the
structure under investigation has a high rigidity and a small size in order to consider the
transmission delays in the mechanical structure to be negligible compared to the sampling
period [5].

2.2. THE INSTANTANEOUS MIXING MODEL

For instantaneous mixtures and if a noise-free case is assumed, the general model (1)
becomes

Y (n)"AX (n), (2)

where both A and X are unknown. This instantaneous mixing model is also called an ICA
model (independent component analysis model) related to the aim of the problem; i.e., to
"nd a linear transformation, which relies on independent components (sources)
contributing to the observations of a mixture of them.

The aim of separation or ICA is to estimate a separating matrix C whose outputs are

S (n)"CY (n)"CAX (n) (3)

to give an estimate of the vector X (n). The ideal result is obtained with C"A~1, but it is not
possible to realize this without any assumptions. The assumption of independent
components allows the estimation of the matrix C, such that the product CA is equal to
a diagonal matrix D up to a permutation matrix.

2.3. THE CONVOLUTIVE MIXING MODEL

The general model of a convolutive mixture can be represented as follows.
Each A

ij
(z) represents the linear transfer function from the ith source to the jth sensor and

is given by A
ij
(z)"+=

i/0
A

ij
(l ) . z~1. The whole mixing system can be summed up as:

A (z)"

A
11

(z) 2 A
1m

(z)

F } F

A
k1

(z) 2 A
km

(z)

.

Thus, the observations can be written as a convolution between the sources and the mixing
process which is usually given as

Y (n)"[A (z)] X (n)#B (n), (4)

where z~1 is both the backward-shift operator, i.e., z~1X (n)"X (n!1) as well as the
complex variable in the z transform. So the aim of separation is to estimate a stable inverse
system of A (z), i.e., a "lter such as

S (n)"[C (z) A (z)] Y (n).
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2.4. INDETERMINACIES AND UNIQUENESS

Intrinsically, the BSS problem is confronted with two inherent ambiguities.
First, it is impossible to know the original labelling of the sources, due to the insensitivity

of the mathematical independence to the permutation of the sources. Assuming that P is
a permutation matrix, the noise-free case (B (n)"0) can be written as

Y"[AP~1]PX,

where the elements of PX are the permuted original sources and the mixing matrix AP~1 is
a new mixing matrix estimated by the BSS algorithm.

The second indeterminacy is that it is impossible to identify uniquely the sources due to
the insensitivity of the mathematical independence to a scaling factor applied on the
sources. Hence,

Y (n)"[AD~1] DX (n).

So, for an instantaneous mixture, any scalar multiplier in one of the sources x
i
can be

cancelled by dividing the corresponding column of matrix A. So a single solution does not
exist but a class of solutions to which the independent sources belong. For a convolutive
mixture, this scaling indeterminacy becomes a "ltering indeterminacy and equation (1) does
not de"ne the "lter A (z) uniquely (i.e., they are not identi"able) but to a linear "ltering D (z).

The non-uniqueness of the BSS results can pose many problems to the user, especially in
monitoring or diagnosis purpose. This di$culty will be tackled in the next part of this
paper.

3. BSS OF INSTANTANEOUS MIXTURES

From the basic ICA model (2), it is necessary to recover X from > by identifying a linear
transformation such as

CA"DP. (5)

3.1. SECOND ORDER INADEQUACY

The mixing matrix A can be expressed as a product of three matrices by singular value
decomposition (SVD) as

A"VD1@2P , (6)

where V and P are two unitary matrices, and D is a diagonal matrix.
To understand the inadequacy of second order statistics for "nding a transformation

C for checking equation (5) independent sources of unit variance are considered. The
covariance matrix of the observation > is given by

RY"E[YYH]"E[(AX ) (AX )H]"AAH"VDVH, (7)

where the superscript denotes the Hermitian transposition.
Consequently, RY does not depend on the rotation matrix P, which is needed to identify

matrix A.
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In short, the BSS problem cannot be solved by using only second order statistics because
independence is a stronger condition than uncorrelation. To estimate the missing unitary
matrix P, it is necessary to resort to an independence criterion using the spatial diversity
provided by the ICA model.

3.2. MEASURING INDEPENDENCE

A mathematical de"nition of independence is given by the probability theory. Random
variables are said to be independent if their joint probability density function (p.d.f.) is equal
to the product of their respective marginal densities, i.e., assume a m]1 random vector
X"[X

1
, X

2
,2 ,X

m
] with a multivariate probability density function p (x), then

independence allows p (x) to be factorized as

p (x)"p
1
(x

1
)p

2
(x

2
)2p

m
(x

m
). (8)

In other words, the p.d.f. of one random variable x
i
is una!ected by the observation of the

other variables of the vector X. This property allows the simpli"cation of the problem
because it makes the calculation of the statistics much simpler; hence, it is then possible to
use a one-dimensional marginal p.d.f. instead of performing the calculation on the
multi-dimensional joint p.d.f. Nevertheless, since de"nition (8) involves the p.d.f. of the
random variable, measuring independence can be di$cult. To circumvent this di$culty, it is
possible to express independence in terms of random variables by the way of cumulants or
generalized moments. So the following relations can be obtained for the two independent
variables X

i
and X

j
.

R1: &&two signals are statistically independent, if all their cross-cumulants (at any order k )
are equal to zero''. [8]

Cum
k
(X

i
, X

j
)"0, (9)

where Cum
k

denotes the cumulant operator at order k. This property makes possible the
derivation of empirical contrasts as in section 3.1.

R2: for any function f and g (allowing the calculus of mathematical expectation),

E M f (X
i
)g (X

j
)N!E M f (X

i
)N EMg (X

j
)N"0 for iOj . (10)

This property will be used to approximate independence in section 3.1.
Once again, it can be seen that independence is a stronger condition than uncorrelation

for which these are only

EMX
i
,X

j
N!EMX

i
N EMX

j
N"0 for iOj. (11)

There is a special case for which uncorrelation is equivalent to independence, which is for
random variables with Gaussian joint p.d.f. This case explains why Gaussian variables are
inadequate to solve ICA problem. In fact, the Darmois theorem [9] shows that separation
can be achieved only if one more than source is Gaussian.

Although uncorrelation does not imply independence, it can be used as the "rst step to
reduce the ICA problem. Actually, if the sources X have unit variance and are spatially
white, then if a whitening matrix W is assumed such as

Z"WY"WAX (12)
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then, the product WA is necessarily a rotation matrix because it connects two spatially
white vectors.

Such a whitening matrix W can be obtained by Choleski decomposition or by principal
component analysis (PCA), and allows a whitened (or sphered) version (Z) of the
observation vector Y to be obtained.

After this step, equation (12) shows that the ICA problem is now reduced to the
estimation of a rotation matrix leading to independent sources. Usually, this unknown
rotation matrix is obtained by maximization or minimization of an objective function also
called the contrast function which implements independence.

3.2.1. Contrast functions

Contrast functions for BSS were "rst introduced by Comon [10] in 1994. A contrast
function applied to BSS is a function of a probability distribution of the separating system
(i.e., CY ) which has the property that it reaches its minimum (or maximum) value when the
source separation is achieved. Of course such a function must take the indeterminacies
inherent to the BSS into account.

Many di!erent approaches exist to develop contrast functions according to the prior
knowledge about the model or about the sources (for example, some knowledge about the
distribution, some moments, etc.), but most of them can be derived from the maximum
likelihood (ML) principle given in reference [11]:

A<"max
A

q (A~1Y) (13)

where q (x ) is the sources distribution which is supposed to be known.
In fact, it is possible to show that the ML principle coincides up to a constant term with

Kullback divergence W (S, X ) between the ideal solution obtained from observations Y (i.e.,
A~1Y ) and the real sources X. A su$cient condition to obtain independent components at
the separator output is then given by the maximization of the contrast (called ML contrast):

U
ML

(S )"W (S, X )"!P p (u) log A
p (u)

q (u)Bdu (14)

where p (u) denotes the p.d.f. of the estimated sources S and q (u) the p.d.f. of the true
sources X.

The Kullback divergence of equation (14) can also be shown to be

W (p (S ), q (X))"I (p(S ))#+
i

W (p
i
(s
i
), q

i
(x

i
)) , (15)

where I (p (S )) is called mutual information (MI ) and is de"ned as

U
MI

(S )"I (p (S ))"P p (s) log A
p (S)

<
i
p
i
(s
i
)B dS. (16)

The "rst term provides a measure of the gap between the joint density of S and the product
of the marginal densities, whereas the second term is a measure of marginal matching
between the true and the estimated sources. Therefore, MI only measures the independence
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of the estimated sources without any assumption about the distribution of the true sources
(which are generally unknown).

As the Kullback divergence is insensitive to any non-singular linear transformation
applied on both densities p (u) and q (u), equation (14) can be written [12] as

U
ML

(S )"W (g (S) ,V)"!H (g (S )), (17)

where V is an M-dimensional uniformly distributed random vector, g (X) is the cumulative
density function associated with the p.d.f. q (u) of the true sources X, and H (g (S)) is the
di!erential entropy associated with the random vector g (S) and de"ned for a random
variable ; as

H(;)"!P p(u ) log (p (u)) du. (18)

The di!erential entropy evaluated at the output of the non-linear function g ( ) ) of the
estimated sources provides the well-known Infomax contrast (IM):

U
IM

(S)"!H (g (S)). (19)

This contrast function is very popular in the neural network community although it is
equivalent to the M¸ one. As g (S) is restricted in [0,1]M, U

IM
(S) is maximized for g (S)

uniformly distributed in [0,1]M, that is for S distributed as X. Thus, it can be seen that
U

IM
(S ) and U

MI
(S ) are closely related and equivalent to U

ML
(S ).

The ML contrast can easily be optimized by a gradient descent algorithm [13]:

+
S
U

ML
(Sk)"E Mu (Sk) SkTN!I,

Sk`1"Sk!+
S
U

ML
(Sk )S k , (20)

where u (S ) is the score function de"ned as u (S)"[!log (q
1
)@,2,!log (q

i
)@,2 ,

!log (q
M

)@].

When the source densities are unknown, the choice of u(S ) can be extended to more
general non-linear functions as proposed by Herault and Jutten [14]. This approach will be
presented in detail in the case of convolutive mixtures in section 4.1.

In the cases mentioned above, the use of p.d.f. is not easy to handle. One way to simplify
the Kullback divergence-based contrast is to introduce cumulants through polynomial
density expansion [15]. The "rst example is given by Gaeta and Lacoume [16] with an
approximation of the likelihood by a Gram}Charlier expansion. Comon [10] suggests an
approximation of the mutual information by an Edgeworth expansion. Hyvarinen makes
some interesting remarks about this approach [17].

Another way to derive some empirical contrast is the approximation of independence
using equations (9) and (10).

For computational reasons, the approximation of cumulants and moments is generally
done up to the fourth order. The minimization of cross-cumulants leads to empirical
contrast like kurtosis cancellation [18], some fourth order cumulants [19], or even a set of
second and fourth order cross-cumulants [11].

Using some additional assumptions, it is also possible to restore independent
components in equation (2) using only the second order statistics. These assumptions can be
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made on the mixing matrix or on the temporal structure of the sources. For the "rst
assumption, the mixing matrix can be found using PCA only if A is a symmetrical matrix
and also if A

ii
"1 [20]. If the sources are time correlated processes, they can be restored

using frequency information. In this way it is possible to achieve separation even for
Gaussian sources, under condition of di!erent spectra. So the estimation of the missing
unitary matrix is given by a joint diagonalization of a set of covariance matrixes with
di!erent time lags [21].

4. BSS OF CONVOLUTIVE MIXTURES

Many approaches can be found in the literature to realize BSS using a convolutive mixing
model. In this paper two approaches of BSS used to monitor the vibrations of rotating
machines [3, 4] are stressed. The "rst method is based on a temporal approach and
implemented through an iterative algorithm. The second approach is based on frequential
model of convolutive mixture discussed in section 4.2.

4.1. TIME DOMAIN BASED SEPARATION

It was emphasized previously that it is possible to restore the source signals up to a linear
"ltering. It is possible, however, to reduce the shape indeterminacy in model (4) by setting
a constraint either on matrices A (z) (the diagonal terms of A (z) are usually supposed to be
unity) or on X (n) (its components are generally assumed to have unit variance). The "rst
constraint, (on A (z)), permits the model shown in Figure 2 for two sources to be simpli"ed.
It is a realistic approximation if it is assumed that the sensors are as close to the sources as
possible. Indeed, it is believed that the ability to detect fault decreases with the increase of
distance between the sensor and the fault source. Thus, it is very important for diagnosis
that the sensor is as close as possible to the engine being monitored. This assumption
implies that the parameters A

ij
are equal to 1 when i"j. This simpli"ed model is usually

assumed when the linear "lters are estimated in the time-domain and the parameters
A

ij
( iOj ) are directly computed. After this assumption, the mixing matrix becomes

A (z)"C
1

A
21

(z)

A
12

(z)

1 D . (21)

In this case A
12

and A
21

represent the cross coupling between the two processes. The second
assumption to reduce the BSS problem is that A

ij
(z) are linear and causal "lters with a "nite

impulse response (FIR). Then the coe$cient A
ij
(z) can be written as

A
ij
(z)"

¸
ij
!1

+
k/0

a
ij
(k) z~k, (22)

where ¸
ij

are the "lter lengths which are assumed to be known.
This assumption is not necessary to solve our problem, but allows the permutation of the

restored sources to be freed [22].
Now, the general idea of convolutive temporal BSS consists of identifying an inverse

matrix of [A (z)] by

C (z)"
1

D (z) C
1

!C
21

(z)

!C
12

(z)

1 D (23)

with D (z)"1!A
12

(z)A
21

(z)O0 to respect the condition of invertibility of [A (z)].



Figure 2. Convolutive mixing model.

Figure 3. Recurrent procedure for BSS.
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The sources will be reconstituted by "ltering signals from the sensors through this
transfer matrix. The two unknown "lters can be identi"ed by a back propagation or
recurrent procedure as shown in Figure 3.
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The solution of this system can be obtained from

s
i
(n)"y

i
(n)!C

ij
(n)*s

j
(n)"y

i
(n)!

¸
ij
!1

+
k/0

C
ij
(n, k ) s

j
(n!k ) (24)

with iOj and i, j3[1,2] for two sources and ¸
ij

is the length of the "lter C
ij
. This solution

can be written in matrix formulation as

S (n)"[C (z)]> (n).

That is

S (n)"
1

D (z) C
1

!C
21

(z)

!C
12

(z)

1 D C
1

!A
21

(z)

!A
12

(z)

1 D X (n), (25)

S (n)"
1

D (z) C
1!C

12
(z)A

21
(z)

A
21

(z)!C
21

(z)

A
12

(z)!C
12

(z)

1!C
21

(z)A
12

(z)D X (n). (26)

System stability will be ensured if the zeros of the polynomial D (z) remain within the unit
circle, i.e., if the "lter 1!C

12
(z)C

21
(z) is minimum phase.

Separation is obtained when S
i
equal to X

i
up a permutation matrix and a linear "ltering.

Here equation (26) yields two solutions:

either C
12

(z)"A
12

(z) and C
21

(z)"A
21

(z) and the perfect theoretical solution, S
1
(z)

equal to X
1
(z) and S

2
(z) equal to X

2
(z) is obtained,

or C
12

(z)"1/A
21

(z) and C
21

(z)"1/A
12

(z) are also possible leading to independent
sources.

In this case, the solution S
i
(z) is equal to !X

j
(z)/A

ji
(z). However, this solution implies

that the "lters are in"nite impulse response (IIR), which is inconsistent with our hypothesis.
The aim of BSS is now to estimate the "lters A

12
and A

21
, and then, x

1
and x

2
could be

recovered from y
1

and y
2

by inverse "ltering. The method used afterwards consists of
"nding estimates C

12
(z) and C

21
(z) of A

12
(z) and A

21
(z) by maximizing a criterion function

of system outputs (24) through the stochastic iteration

c
ij
(n#1, k )"c

ij
(n, k)#k

ij
U

ij
(n, k ), (27)

where U
ij
(n, k ) is a function maximizing the independence between the components of S (n)

and leading to the convergence U
ij
(n, k )"0, where k

ij
are small gain factors that govern

stability and rate of convergence.
Many of the independence criteria presented in section 3.2 can be extended to

convolutive mixtures. Three of them have been implemented for this application.

(a) Output decorrelation [23],

A1: U
ij
(n, k)"EMS

i
(n)S

j
(n!k )N . (28)

(b) Output non-linear function cancellation [24],

A2: U
ij
(n, k )"E M f (S

i
(n))g (S

j
(n!k ))N . (29)
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(c) Output cross-cumulants cancellation [24],

A3: U
ij
(n, k)"!sign

Lcum
13

MS
i
(n), S

j
(n!k )N

Lc
ij
(n, k)

, cum
13

MS
i
(n), S

j
(n!k )N (30)

for iOj and i, j3[1,2], and 0)k(¸, ¸"max (¸
ij
).

A recent study of A1 and A2 was presented in reference [25], including stability analysis
and asymptotic behaviour, for a large class of separating functions. The authors showed
that the stability conditions are related to the source statistics, the separating functions, and
the mixing "lters for independent identically distributed (i.i.d.) random sequences. Cruces
and Castedo in reference [26] performed a similar study for the cumulant algorithm A3.

For a good implementation of these classes of algorithms, it is necessary to make some
remarks. The independence between the output i at time n and the output j at a di!erent
time (n!k ) is tested to obtain as many equations as coe$cients in "lters (2¸). However, the
output independence test will be su$cient if these 2¸ equations are independent. Therefore,

U
ij
(n, k )OU

ij
(n, k!1). (31)

This condition is veri"ed if the signals have su$ciently broadband spectra and if the
sampling frequency (F

s
) is not too high, so that s

j
(n) and s

j
(n!1) can be actually

independent. Otherwise, over-sampling would damage the algorithm because it would
generate adaptation equations that are too similar.

4.2. FREQUENCY DOMAIN BASED SEPARATION

In the frequency domain, the convolutive mixture is reduced to an instantaneous complex
mixture for each frequency bin and can be written as

Y (n, f )"A ( f ) X (n, f )#B (n, f ), f"0,2 , N!1, (32)

where Y (n, f ) (respectively, X (n, f ) and B (n, f )) is the N-points discrete Fourier transform
(DFT) of the nth data block of the data vector Y (n) (respectively X (n) and B (n)).

The transfer matrix A ( f ) characterizes the linear propagation from sources to sensors
and must be non-singular to recover the sources at the frequency bin f. The hypotheses of
independence about sources and noise are assumed to be just the same as for the temporal
model.

The sources separation is performed in each frequency band by a BSS algorithm for
instantaneous complex mixed sources as described in Figure 4.

Setting a constraint of unit variance of the sources eliminates the scaling indeterminacy
here. The mixing matrix A ( f ) is then expressed as the product of three matrices, after
a singular value decomposition:

A ( f )"V ( f ) D ( f )1@2P ( f ), (33)

where V ( f ) and P ( f ) are two unitary matrices. D ( f ) is a diagonal matrix. The two matrices
V ( f ) and D ( f ) are identi"ed from the second order statistics as in equation (7). They
contain, respectively, the eigenvectors and the eigenvalues of the spectral matrix of the
observation Y (n ). After projection of the observation Y (n, f ) in the subspace spanned by



Figure 4. Frequential BSS separation.
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the eigenvectors and normalization, the data Z (n, f ) are whitened. They are linked to the
components of the source vector X (n, f ) by a remaining unitary transformation as in
equation (12):

Z (n, f )"P ( f )X (n, f ). (34)

The matrix P ( f ) can be identi"ed by any of the approaches for BSS of instantaneous
mixtures described in section 3.2, using higher order statistics or temporal correlation of the
sources into each frequency bin.

Concerning the temporal correlation of the sources, it is proved in reference [27] that
matrix P ( f ) results on the diagonalization of delayed interspectral matrices. Concerning
statistical independence, the additional information exists only with the hypothesis of
non-Gaussian sources. Fourier transform is often thought to converge towards
Gaussianity, but it was shown in reference [28] that this assertion is not valid for spectral
lines signals such as those of rotating machines. More precisely, the spectral kurtosis de"ned
as

KX
N
( f )"

(1/¸)+L~1
n/0

DX
N
(n, f ) D4!D(1/¸)+L~1

n/0
X

N
(n, f )2 D2

((1/¸)+L~1
n/0

DX
N
(n, f ) D2)2

!2

tends toward !1 at all the harmonic bins when the number of averages is large enough.
Hence, for the latter, any higher order based source separation algorithm for instantaneous
complex mixtures can be used in each frequency bin. Here, a maximum likelihood based
method [11] is applied to estimate P ( f ). In the case of two sources, P ( f ) is a complex
Givens rotation, parameterized with two angles. The maximum likelihood function is
computed, using a Gram}Charlier expansion of the p.d.f. of the sources. The expansion is
stopped at the fourth order and P ( f ) is expressed with fourth order cumulants of the
observations.
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As the mixing matrix is recovered up to a permutation matrix P ( f ) and a diagonal
complex matrix D ( f ), a matrix W ( f ) has been estimated such that:

W ( f )A ( f )"D ( f )P ( f ). (35)

To remove the permutation indeterminacy the re-ordering step described in reference
[28] can be used. It aims to recover the statistical relationship between the estimated
sources at one frequency bin and the temporal sources X

i
(n). It uses the redundant

information between S
i
(n, f ) and S

i
(n#1, f ) on the temporal source. Indeed, the MA "lter

F
f
(z)"1!ze!(2inf/N)

reconstitutes the temporal signal (X
i
(n)!X

i
(n!N)) when applied on S

i
(n, f ) in each

frequency band. The permutations are then detected and removed, comparing the
coherence between the "ltered estimated sources between di!erent frequency bins f.
Choosing f

ref
as the reference channel and labelling S

ref
the source lying in it, the

re-organizing step is performed following the rule

S
q
(n, f )3S

ref
if q"max

j

CC (Ff
ref

(S
ref

(n, f
ref

)), F
f
(S

j
(n, f )))

with CC (X, >) de"ned as is a coherence function de"ned as

CC (X, > )"
E[X>*]

JE[DXD2]E[D>D2]
.

A constraint is then applied to X (n) by an energy normalization of S
i
(n, f ) in each frequency

bin followed by a correlation measure between S
i
(n, f ) and >

j
(n, f ) for j"1, 2. In that way,

"lter indeterminacy can be partially circumvented by restoring the PSD contribution of
each source on each sensor. This approach is equivalent to that described in section 4.1
when sensors are actually near the sources.

5. APPLICATIONS

As previously stated, the aim of BSS is to recover unknown sources without any prior
knowledge about them or the mixing process. Di!erent statistical criteria can be used to
quantify the independence of signals such as those presented in the previous sections. This
part focuses on the three algorithms in temporal domain described in section 4.1 and the
frequential domain approach described in section 4.2.

5.1. SIMULATIONS

The purpose of this part is to provide an illustration of the capability of BSS algorithms
to separate signals from rotating machine vibration. From this point of view, two synthetic
signals are generated following the model below, which represents an example of vibrations
from a gearbox [7].

x (n)"
a
+
i/1

A
i
sin (2nif

m
n#/

i
) C1#

b
+
j/1

B
j
sin (2ni f

p
n#/

j
)D#e (n),



Figure 5. Spectra of the observed signals (mixtures).
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where A
i
and B

j
represent the amplitude modulation law, e (n) is a real Gaussian noise, and

/
i
and /

j
are random phases uniformly distributed in [0, 2n]. The mixtures are obtained

using a transfer matrix de"ned in equation (21). As the choice of mixing "lters is not really
important, for this experiment A

12
"[0, 0)01,!0)09, 0)05,!0)18, 0)59, 0)46]T and

A
21
"[0, 0)1, !0)15, 0)55, 0)42,!0)12, 0)04]T and the two simulated observations are

presented in Figure 5.
After separation step, the results are illustrated in Figure 6. The separation performances

are presented in the Table 1 in terms of:

Residual cross-talking error (RCTE), de"ned as

RC¹E (s
i
, x

i
)"10 logG

E[(s
i
!x

i
)2]

E (x2
i
) H . (36)

Mean square error (MSE) between the "lter coe$cients:

MSE
ij
"

1

¸

+
k

(c
ij
(k )!A

ij
(k))2, (37)

where ¸ is the number of coe$cients for each source A
ij
. This measure is generally used for

white sources but this example shows that a harmonic signal with su$ciently high number
of components allows a good estimation of the mixing "lters.

Examining these performances, every algorithm provides satisfactory separation results
(RCTE (!23 dB for each estimated source). However, A1 and A3 seem to be less
sensitive to coloured sources, which are implicitly assumed for temporal methods to
estimate "lter coe$cients. Nevertheless it is explained in reference [29] that "lter
coe$cients are estimated in order to match an independence criterion and not to ensure the
correct estimation of the "lters. That is why MSE criterion is not really signi"cant for
non-temporally white signals.



Figure 6. Spectra of the estimated and the real sources. Bottom to top: real source, A1, A2, A3 and frequency
domain approaches (FDA).

TABLE 1

Performances comparison

RCTE
1

(dB) RCTE
2

(dB) MSE
12

MSE
21

A1 !31)76 !31)09 0)0004 0)0003
A2 !27)20 !23)99 0)0018 0)0023
A3 !34)92 !32)79 0)0003 0)0005
FDA !29)25 !27)23 0)0020 0)0019
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5.2. EXPERIMENTAL RESULTS

5.2.1. Experimental context

The experiments were made on a test bench carrying two DC motors (1)4 and 1)1 kW)
with di!erent rotation speeds. The two motors were "xed to the same structure as in
Figure 7. Two accelerometers were glued on each motor to measure vibrations.

The problem illustrated by this experiment is one of a factory in which two rotating
machines operate simultaneously, but each machine must be diagnosed separately. Thus,



Figure 7. Test bench.

Figure 8. Spectra of the source references.
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according to the superposition principle, signals from the other machine disrupt signals
received by sensors placed on each machine. There is a great interest in the use of BSS
methods as part of the diagnostic process because BSS should free us from noisy
environment; that is restoring on each sensor the signature of its own machine without
having to stop the machines which would be damaging to the production. For this purpose,
BSS can be viewed as a pre-processing step (de-noising) that improves the diagnosis.
Traditional methods of fault detection could then be applied to the speci"c signatures of the
system to be diagnosed.

When treating real recordings, it is very di$cult to measure the separation quality. Here,
prior knowledge about the sources was used; that is, harmonic frequencies in relation to the
mechanical components as well as the signals recorded on each source separately in the real
environment (the reference).

The two reference signals are shown in Figure 8. The rotation speed of the two motors are
set to 48)5 Hz for motor 1 (1)1 kW) and 31)5 Hz for motor 2 (1)4 kW). Motor 1 is fed by



Figure 9. Spectra of the sensor signals (mixtures).
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single-phase wiring (recti"ed) which provides 100 Hz for the fundamental frequency plus the
harmonics. The motor 2 is fed by three-phase wiring (recti"ed) which presents 100, 200 and
300 Hz frequencies. These wiring frequencies are represented in the "gures in dashed and
dotted lines. The harmonics of the low rotating frequency (motor 2) are drawn in dotted
lines and those for the high rotating frequency (motor 1) are drawn in dashed lines. Each
motor is "tted out with two single-row roller bearings (6203 RS C3) and drives a main shaft
"lled with two self-aligning roller bearings (2207 KTV C3). Roller bearing 2A, 2B, 2C, and
1B were found to be faulty and to induce two defect frequencies at 134 Hz (outer race fault
on 2C), 179 Hz (outer race fault on 2A), 207 Hz (outer race fault on 1B) and 210 Hz (inner
race fault on 2B). These frequencies are drawn in Figures 8}10 in solid lines. Twenty
thousand samples were recorded at F

s
equal 2 kHz and resampled for a temporal approach

to 500 Hz. Figure 7 presents the PSD estimated with the Welch averaged method of the two
records obtained on each sensor. Each PSD was normalized by its maximal value.

5.2.2. Settings

With regard to the temporal methods, the number of "lter coe$cients ¸ for the mixture
was experimentally estimated by the impulse response method equal to 100 for a sampling
frequency equal to 500 Hz. All temporal algorithms were implemented with a constant gain
(for di!erent n) but with multiple passes of the observations for di!erent values of k

ij
in

order to re"ne the results around the separating solution. Both the adapting steps k
ij

were
set to [0)2, 0)1, 0)01, 0)001]. For the frequency domain method, the mixing matrix has been
estimated for 256 frequency bins in the frequency band [0}250] Hz. Twenty thousand
samples were considered for each frequency channel to perform separation.

5.2.3. Rotating and feeding frequencies

The results obtained with the four approaches are depicted in Figure 10. For legibility,
each plot is shifted (20 dB) with respect to frequency domain approach.

The results indicate that all the methods except cross-cumulants cancellation give
satisfactory results for the two motor rotating frequencies plus harmonics (position and



Figure 10. Spectra of the estimated sources. Bottom to top: frequency domain approach (FDA), A3 approach,
A1 approach, A2 approach.
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magnitude) except for the "fth harmonic of motor 1 for which temporal BSS was not
e$cient. The A1 criterion seems to provide a slightly better result for the fundamental
frequency of motor 2 and is the more accurate temporal method to solve the BSS problem
in this experiment. Another remark that favours this solution is that rotating machine
signals are present with obviously highly temporal correlation and all the temporal
methods used in this paper are dedicated to temporally white signals. Among the temporal
methods, the second order criterion seems to be less sensitive to this assumption about the
sources. The FDA approach is "tted to this hypothesis and gives better results for the low
power harmonics ("fth harmonic).

With regard to the feeding frequencies (k.100 Hz) present in both sources but prevalent on
motor 1, the frequency domain method also provides better separation whilst the, temporal
approach attributes one feeding harmonic in each source.

5.2.4. Bearing fault detection

Bearings are one of the most widely used components in various kinds of processes as
well as robots, manufacturing processes and rotating machines. In order to enhance
productivity, product quality and reliability, a monitoring system is essential to check the
status of the di!erent components. The interest of BSS applied to monitoring appear in for
example the case of bearing fault detection, where some fault related frequencies appear as
a function of the axle rotating speed [30]. One of the most useful methods is in detecting and
following these fault related frequencies and then to know which type of defect the bearing
has as well as its importance. So an early detection of these frequencies required knowledge
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about axle bearing rotation speed and also a maximum local signal-to-noise ratio around
the fault related frequency. In this experiment, many processes worked simultaneously and
observe a mixture of them was observed. The mixing phenomenon complicates the calculus
and the detection of the bearing fault related frequencies (especially because there are
several rotating speed in the same mechanical system).

To illustrate the potential of BSS in bearing fault detection, it is stressed that this paper
deals with only one clearly identi"ed fault related to a bearing. This fault is positioned on
the outer race of the axle driving roller bearing of the motor 1 (bearing 1B). The next
relation gives the calculus of the corresponding defect frequency:

F
ir
"

n

2

RPM

60 A1!
Bd

Pd
cosUB"207Hz, (38)

where Pd is the pitch diameter, n the number of elements, Bd the ball diameter, U the contact
angle and RPM the rotation frequency.

Figure 10 clearly shows that this frequency (207 Hz) is associated with the &good' source
and so it is easier to calculate the origin of the mechanical failure (for this example, a defect
on outer race related to the motor operating at 48)5 Hz). Here, BSS can be viewed as
a pre-processing step, which make easier and enhance the detection and the monitoring of
the mechanical system to be diagnosed.

Other bearing faults are present on the process (see section 5.2.1), and it can be veri"ed
that most of these faults are clearly re-associated with its driving shaft. However, the fault
connected with the bearing 2C (outer race), which is farther from the sensor seems to be
attributed to the &good' source only with a frequential approach. For temporal methods, no
BSS is performed at this frequency. A plausible hypothesis is that the faulty bearing
corresponding to this frequency is separated from the principal vibratory sources (i.e., the
motors). In this case, the faulty bearing acts like a third source towards the sensors and
therefore the "ltering indeterminacy (section 2.4) cannot be removed. The frequential
domain approach is insensitive to this fact due to the presence of only one source in the
frequency bin of interest and so the separation in this frequency bin tends to attribute the
frequency component to the closest source in the maximum coherence sense.

5.2.5. Practical point of view

From a practical point of view, it must be noted that the frequency domain algorithm is
extremely computationally di$cult to implement. The good results obtained with the
decorrelation approach (A1) and the attractive computational cost seems to be a good
alternative to meet the objective. However, to obtain a very good separation quality in few
frequency bins, the frequency domain method seems to be more accurate. A combination of
these two methods could provide a good alternative which is neither too computationally
costly nor too accurate.

6. CONCLUSION

This paper has described the basic principles of BSS, and has discussed its application to
rotating machine vibrations, through simulations and experiment. In the most general case
with linear assumptions, the mixing process generated by mechanical systems is assumed to
be convolutive. In this framework, two approaches have been presented which are suited to
solving this problem. The harmonic nature of the rotating machine signals complicates the
separation procedure with temporal methods, which are initially developed for temporally
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white signals. In spite of this di$culty it is shown that both temporal and frequential BSS
approaches give rise to similar results. So the results provided in this paper allow BSS to be
considered as a promising tool to pre-process the data in mechanical fault diagnosis
applications. However, the high computational cost of the frequential approach with
respect to the temporal one is prohibitive for an implementation for all the frequency bins
and the use of FDA is recommended only if the frequency channel of interest are a priori
known and also if the gap from model hypothesis (linearity for example) is no longer
negligible. Future work will consist of extending and studying the feasibility of BSS methods
to more than two sources. Another way is to generalize BSS methods to non-linear mixtures
in order to take account of more complicated physical models for generation and
interactions of vibratory sources.
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